B

AFRIL-SR-AR-TR-04-
REPORT DOCUMENTATION PAGE AR-TR-04

Public reporting burden for this collecti .of f ion is estimated to average 1 hour per response, including the time for reviewing instrt 0 5
data needed, and c leting and reviewing this collection of information. Send g g this burden estimate or any other asy
this burden to Depanmsnt of Defense, Washington Headquarters Services, Directorate foglMgmm10pemhons and Reports (0704-018

4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to ... —_—
|_valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

"1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE ) 3. DATES COVERED (From To)
26-09-2004 Final Technical Report 15-12-2000 ~- 14-12-2003
4. TITLE AND SUBTITLE ) _ 5a. CONTRACT NUMBER

. F49620-01-1-0105

Experimental Study of Nonlinear Behavior in Hypersonic Laminar | §b.GRANT NU/MBER
N/A

Boundary Layer 5c. PROGRAM ELEMENT NUMBER'
N/A

6. AUTHOR(S) 5d. PROJECT NUMBER
N/A

Chokani, Ndaona Se. TASK NUMBER
. N/A

5f. WORK UNIT NUMBER
N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
4

NC State University
Office of Contracts and

Grants N/A

Campus Box 7214

Raleigh NC 27695-7214

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Unsteady Aerodynamics & AFOSR )

Hypersonics Program

AFOSR /NA 11. SPONSOR/MONITOR'S REPORT
4015 Wilson Blvd, Room 713 ' NUMBER(S)
Arlington, VA 22203-1954 N/A

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution unlimited.

20041028 087

14. ABSTRACT
Three high order spectral analysis techniques - the short-time Fourier transform (STFT) the Fourier blspectrum and

the STFT bispectrum - are developed and used to characterize the nonlinear dynamics of a transitioning hypersonic boundary
layer flow. The hot-wire measurements in a transitioning boundary layer in the NASA Langley Mach 6 quiet tunnel are
analyzed, and the effects of wall cooling and adverse pressure gradient on the nonlinear dynamics are examined.

The STFT identifies the modulation of the dominant second mode and its harmonic in the nonlinear region of the
transition process. Phase modulation is observed to be the primary energy transfer mechanism, but in the latter nonlinear stages
the role of amplitude modulation is increasingly important. The Fourier bispectrum quantifies the modulation as a low
frequency phase coupled quadratic interaction. In addition, the Fourier bispectrum quantifies the dominant role of the second
mode through its forcing of harmonic quadratic interactions. The STFT bispectrum identifies the transient stages of nonlinear
interactions that are observed to be important in the nonlinear stages of transition. These nonharmonic, broadband interactions
may offer new approaches for control of hypersonic transition.

15. SUBJECT TERMS
Hypersonics. Boundary Layer Transition. High-order Spectral Analysis.

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Ndaona Chokani
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (mclude area
Unclassified | Unclassified | Unclassified None 129 code)
919-660-5333

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

BEST AVAILABLE COPY




Final Technical Report - F49620-01-1-0105

Table of Contents

LISt OF TADIES...eeceevveeestreeereeeeisneereteresseessessessssreessssssessssssessassessnsnsssessssassssssesassssessssssesnssses i

LSt Of FIGUIES...veueteeeieeirierctrecetcet ettt b e sa s ii
List Of SYMDBOIS.....coviveiicirteeeintee e i

| IR 317 ¢ 16 11 To15 () 1 URUUUUURU OO U UURRRUPP

1.1. Hypersonic Transition.........coceiiiciiiiiiniinniicnii et sn s sssessanes

11,1, APPLCAtIONS....coveeieiceiirrciiinccrteisieei bbb

1.1.2. Boundary Layer Stability........cccccevrenveneiiienenccinniiiiiencniiieenns
1.1.3. Wind TUNNEI NOISE...veiiiiereerrrririreeeerttecnraeiesirierssereeesrssneesssssesssessasssssasessens

1.1.4. Previous EXPeriments.......c.cccccevereererermneciinniniinisisensnessesnesinsssssensns

1.1.5. Previous COMPULALIONS ..cvevverrirreeercrerieieeniiieennsreseesresnrsesssssesnsssessessens

1.2, NONINEAr INTEIACTIONS. ..ciiivvevreeirerrteereeersirreeeisessieereeessessssesseessssssnsssesessonsassasssessnnes

1.3, OBJECHIVES...vievireicieeiirietee ettt sa et sa s a s sb bbb srn

2. APPIOACH. ..ottt et
2.1, QUIEE TUNNEL...ueovieieieecrieeirce sttt et sb e e sresae s basne e
2.1.1. Quiet Tunnel Technology......cccccvveviiviccininnniininincit e

2.1.2. Lachowicz and Blanchard EXPeriments...........cceuveeuereerressecsenensesesesesnnnes

2.1.3. Constant Voltage ANEMOMELET........cceveriruirieriiiriinniienisesicsntesninessenes

2.2. High Order Spectral Analysis.......ccocvereerreininiiniiniinienieceninenecneniecnencsnnes

2.2.1. Short-Time Fourier TransforM......couuieiiiiviiriiieeiiiinnrreiereiessesesessrssssnses

2.2.2. BiSPECIIUM...uceeerirecrirreeeineereenecenesseesesseseetssesenesessssesssasesseessensssnennennos
| 2.2.3. STFT BiSPECtrtUm...cceeiiriiniiiiiniiiiiieeiie et neeestcsesss e snesressssssesns

3. RESUIES A0 DISCUSSIONS. ..covuveireeeierreeisirreeisireressrressssseessssseeesisssesessssessesssssesssssssessssessas

3.1. Short-Time Fourier TransSform....ccceivieecrieeeiinrniieeeiessssvreeesssessisssesesssssssssereessonss

‘ 3.1.1. SPECLIOZIAM. c.ciuiieiriirieictctr ettt s s
3.1.2. Amplitude and Phase Modulations........c..cevveerenmrciininennecinenncnenieionens

3.1.3. KUrtoSis and SKEWNESS...uuuviviiiirerieecrrreiiecrenrrtre e e esssesrareseceessssenessesssnnnns

3.1.4. Harmonic Frequency Band..........cccocevvirviiiiviiiinnninicniincnccniniecnnenn,

3.2. Fourier BiSPectrUM......cccvciiirieinieincnieiciisrerere et sesesiess s e s sssesesasnasns
3.2.1. BaSCINE....eceeiieeiccteeccce ettt ettt et e s see e s nee



Final Technical Report - F49620-01-1-0105

3.2.2. Effect of Wall COOlNG...ccoumivmimiiiiniticimisiinii s 32
3.2.3. Effect of Pressure Gradient..........coccocvevnviniiininnneninienencnnnsresissssiessenenes 33

3.3, STFT BiSPECtIUML..ccuciiiiiiiiiiiniiiiiiieretere e s 34
3.3.1. BaSEHNE...ciiieieeeicicrtcre ettt e st 35

3.3.2. Effect of Wall COOINE...c.ccoereriieeiiiiiriiiiiiinienre ettt st snsnes 38

3.3.3. Effect of Pressure Gradient..........coccovereneciiecriniininnninennesssnnsesseeesas 40

. Concluding REMATKS. ....cc.eevriemriericceciiieiiicieniniirs ettt 43
4.1. Summary of RESUILS......cccccvveirirmiiieiiiiiiiici e 43
4.2. Recommendations for Future Work.........cocooviniiniininnnneece 45

. REfErENCES...cuveeriretererieretcreeeecrer e et breaes 47
e TADIES .ottt b e bbbt eb bR 51
v FRQUIES ottt et 52



Roman Symbols

2o, 3o

aw

A

.

b’ (i, 1)
by’ (fi f3)

b’ (T, f)
byrr” (Ts 15 1)
b,2(T)

B

Cw

LI o o S
S Fi

Jo

Js

Je

G«(t, f)

Iy

(5]

L'y

Final Technical Report - F49620-01-1-0105

List of Symbols

First and second harmonic of the second mode frequency
Hot-wire overheat ratio

Coefficient for Mcy,4 estimation

Calibration coefficient in CVA transfer function
Bispectrum

Fourier bispectrum

Summed bispectrum

STFT bispectrum

Total bispectrum

Coefficient for Mcy,4 estimation

Specific heat of hot-wire material

Capacitance in CVA frequency compensation circuit
Diameter of the hot-wire sensor

Fluctuating output voltage of CVA

Fluctuating hot-wire voltage

Software corrected fluctuating CVA output voltage

CVA fluctuating output voltage before software correction

Total CVA output voltage (mean plus fluctuation), Mean output of
CVA

Frequency in Hertz

Nyquist frequency

Frequency of the most amplified second mode disturbance
Sampling frequency

Operational amplifier frequency in CVA

Short-time Fourier transform of s(?)

Hot-wire current

Hot-wire current fluctuation

iii



Nerr

P.(f), P
,

R

R;

R;

Ra, Ry, R4, Rr
Rw

s

(1)

S()

Sto

Sou

Lt

In

Ic
T,
TTo

Final Technical Report - F49620-01-1-0105

V-1

Heat conductivity of air

Nondimensional CVA output

Mach Number, Number of STFT segments

Hot-wire time constant for CVA

Number of elements summed for the summed bispectrum
Number of data points in the time series

Number of STFT bispectra

Number of ensembles used to compute STFT bispectrum
Number of data points in time series used to compute the FFT
Pressure term in Navier-Stokes

Power spectral density

Ratio of sensitivity coefficients

Stability Reynolds number, correlation coefficient, radius of curvature
of the cone flare

Resistance in CVA circuit

R, + Ry

Resistance in CVA circuit

Hot-wire resistance

Laplace operator

Time series

Fourier transform of s(f)

Sensitivity coefficient for total temperature fluctuations
Sensitivity coefficient for mass flux fluctuations
Time

Time in skewness and kurtosis calculation

FFT time interval, time of STFT bispectrum
Hardware time constant for CVA

Total or stagnation temperature

Normalized RMS total temperature fluctuations

iv




Greek Symbols

TR > R OA R, X

FERTCIE

Final Technical Report - F49620-01-1-0105

Normalized RMS mass flux fluctuations
Velocity

Velocity vector in the Navier-Stokes equation
Reference dc voltage in CVA

Voltage in the CVA circuit

Voltage across the hot-wire in the CVA

Axial distance measured from apex of the flared-cone model

Amplitude modulation index, » — intercept in fluctuation diagram
Phase modulation index, » — intercept in fluctuation diagram
Modulation or sideband frequency

Frequency resolution

Temporal resolution in data time series

Temporal resolution in STFT

Time duration of STFT bispectrum

Angle in fluctuation diagram

Running analysis window

Dilation or scale parameter for wavelet analysis

Kurtosis

Skewness

Mean

Kinematic viscosity

3.14159...

Virtual total temperature fluctuation

Density

Mass flux

Hot-wire density

Root mean square



Wn

Subscripts

Superscripts

*

!

()

Abbreviations

91-6
93-10
AC
AEDC
CCA
CTA
CVA
DC
DCD
DNS
FFT
HOSA
LST
NASA
PC
PSD

Final Technical Report - F49620-01-1-0105

Delay time or translational parameter for wavelet analysis

Natural frequency

Freestream

Complex conjugate

Fluctuating quantity

Refers to geometric description of the Blanchard and Selby model
(Reference 21)

Refers to geometric description of the Lachowicz et al model
(Reference 35)

Alternating current

Arnold Engineering and Development Center
Constant current anemometer

Constant temperature anemometer

Constant voltage anemometer

Direct current

Digital complex demodulation

Direct numerical simulation

Fast / finite Fourier transform

High order spectral analysis

Linear stability theory analysis

National Aeronautics and Space Administration
Personal computer

Power spectral density

vi




PSE
RMS

STFT

Final Technical Report - F49620-01-1-0105

Parabolized stability equations
Root mean squared

Short-time Fourier transform

Units of Measurement

dB
St
kHz

in

m/s
mm
ms
mV
MHz
psia

rad

s, sec

4
°R

Decibels

Foot

Kilohertz

Inch

Kilogram
Degrees Kelvin
Meters per second
Millimeter
Millisecond
Millivolts
Megahertz
pounds per square inch, absolute
Radians

Watts

Second
Micrometer
Ohms

Per foot

Degrees Rankine

Miscellaneous Symbols

vii




— /\l_/\
2T NS
~—

a4 @ u

d/dt

Final Technical Report - F49620-01-1-0105

Time average or a normalized quantity
Magnitude of a quantity

Time average or mean of a quantity
Phase of a quantity

Segment over which the STFT bispectrum is evaluated, i =1, 2, ..., 7
Real part

Imaginary part

Partial derivative

Gradient operator

Dot product

Time derivative of a quantity

“Produces through nonlinear phase coupled interactions”

viii




Final Technical Report - F49620-01-1-0105

INTRODUCTION
1.1 Hypersonic Transition

1.1.1 Applications

There is presently a strong interest in the development of air breathing hypersonic
vehicles to be used for rapid global access. A critical aspect in the design of these
vehicles is knowledge of the position of laminar to turbulent transition. An early
transition results in increases in the skin friction and the surface heat transfer. The higher
heating results in an increase in the weight of the thermal protection system, and thus a
reduced payload mass fraction. The larger viscous drag resulting from the turbulent flow
has an adverse effect on the aerodynamic performance of the vehicle.'

Transition prediction methods shall play an important role in the development of
these vehicles. The improvement in the capabilities of these predictive tools requires a
better understanding of the physical processes related to hypersonic transition processes.
This improved understanding shall also enable the development of transition control
techniques. Recently a very promising passive control method has been demonstrated,>
But, it is known that passive control methods cannot be adapted in time and space.
However, if the flow physics are better understood, it may, in the future, be possible to

develop active control methods whereby the flow is locally and dynamically manipulated.

1.1.2 Boundary Layer Stability

The boundary layer transition process is characterized by the development and

growth of instability modes that are present in the boundary layer. In a hypersonic
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imperfections, and the sound propagating from the settling chamber and the valves that
are upstream of the test section. If the flow is properly conditioned and the nozzle is
carefully fabricated, the latter two sources are dominated by the noise radiating from the
turbulent boundary layer on the tunnel walls.’ Therefore, the key to designing a quiet
wind tunnel is to extend the region of laminar flow on the tunnel wall. Wilkinson'
summarizes the quiet tunnel work at NASA Langley that culminated in the development

of the Mach 6 quiet tunnel.

1.1.4 Previous Experiments

Boundary layer stability experiments provide details of the mechanisms that
subsequently lead to transition. The stability experiments of Kendall'! provided the first
confirmation of the existence and dominance of the second-mode disturbances in
hypersonic boundary layer flow. At AEDC, Stetson et al employed thermal anemometry
in a series of experiments that examined the stability of laminar boundary layer flow over
a straight cone'? including the effects of nose-tip bluntness," unit Reynolds number, "
and wall cooling.”® Kimmel e al’ documented the spatial structure of the second-mode
disturbance in a transitional hypersonic boundary layer through the two simultaneous hot-
film probe measurements on a sharp cone. Kimmel and Poggie'®'” have more recently
further examined the spatial structure of the second-mode disturbance. Although the
experiments mentioned above have significantly improved our understanding of the
hypersonic transition process, they were conducted in conventional wind tunnels and thus
potentially suffer from the effects of excitation due to the elevated freestream

disturbances levels.
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A series of three pioneering hypersonic boundary layer studies in a low-
disturbance environment were conducted in the NASA Langley Mach 6 Quiet Tunnel.
Lachowicz et al'® detailed the growth of the second-mode disturbances on a flared-cone
at zero degree angle of attack through uncalibrated hot-wire measurements. Doggett et
al'® examined the disturbance growth on a flared-cone model at angle of attack.
Blanchard and Selby”® examined the effect of wall cooling on the disturbance growth
rates. When taken together, these three experiments document the effects of angle of
attack, pressure gradient, and wall cooling on the hypersonic boundary layer stability in a
quiet wind tunnel. However, the spectral analysis in these studies is limited to the
application of Fourier spectra. Thus only the linear region of the transition process can be
quantitatively described. In this regard the quiet tunnel experiments show excellent

agreement with linear stability theory, Figure 1.3.

1.1.5 Previous Computations

A computational evaluation of the NASA Langley Mach 6 Quiet Tunnel
experiments was conducted by Manning.?! A Navier-Stokes analysis of the mean flow
was compared to the experimental results and then used as the basic flow in a linear
stability theory analysis (LST) of the boundary layer. Results showed good agreement
with the experimental data in the early linear stages of transition. However, the
agreement deteriorates in the latter nonlinear stages of the flow, and indicates the need to
use more advanced prediction tools to estimate the onset of transition.

The prediction of transition to turbulence of hypersonic flows is a difficult task. A

complete transition prediction tool requires a detailed knowledge of the freestream and
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surface disturbance environment that provide the necessary forcing that generates,
through the receptivity process, the instability waves in the boundary layer. Then the
various stages in the evolution of the instabilities - linear growth, nonlinear growth,
nonlinear saturation, and final breakdown - must be simulated. The advent of the

22 and direct numerical simulation (DNS)24

parabolized stability equations (PSE)
methods has motivated computational approaches to couple the receptivity and evolution
stages for hypersonic flows. From a design perspective, transition prediction tools based
on the Reynolds-averaged Navier-Stokes equations,” PSE, compressible linear Navier-
Stokes equations, and DNS show promise for transition prediction. However, the code
validation of these prediction methods requires that details of the underlying flow physics
be more completely described. At present, the quiet tunnel experiments of Lachowicz et
al,'® Doggett et al,' and Blanchard and Selby® provide the best simulation of free-flight
conditions, however the majority of these measurements were uncalibrated. It is therefore

necessary for future experiments to also focus on acquiring calibrated measurements, as

the validation of computational methods such as the PSE require such data.

1.2 Nonlinear Interactions

As is seen in Figure 1.3, the initial growth of the second mode that is measured in
the experiment is in good agreement with linear stability theory.'® However, further
downstream there is a deviation from the LST theory that is a qualitative indicator of
nonlinear interactions. This deviation from LST also coincides with the appearance in the
spectra of peaks centered on frequencies that are two and three times the frequency of the

dominant second mode, Figure 1.4. This is further qualitative evidence that nonlinear
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interactions play a dominant role in the breakdown to turbulence. Chokani®” noted that
the spectral amplitudes of the second-mode disturbance and its harmonics saturate as the
disturbances propagate downstream, Figure 1.5.

The nonlinear interactions between disturbance modes in the boundary layer are

known to arise from the convective derivative, (i-V)a, terms in the governing Navier-

Stokes equations

6—u+(z7-V)LT=——1-Vp+VV2iZ (1.2.1)
ot Yo,

The nonlinear interactions in a hypersonic boundary layer were first quantified

1.2®  Hot-wire

using the bispectral analysis technique by Kimmel and Kendal
measurements on a straight walled cone in a Mach 8 conventional wind tunnel were
analyzed. The resulting bispectra indicated that nonlinear phase-coupled interactions,
associated with the second mode, generate the harmonic that is observed in the spectra.
Chokani® analyzed the measurements on a flared cone model in a Mach 6 quiet tunnel
and detected additional nonlinear phase-coupled interactions. The detected interactions
included the forcing of the harmonic by the second mode, but also interactions of the
second mode and its harmonic to generate a second harmonic. Additionally, during the
latter stages of transition, a dominant low frequency interaction, which was speculated to
be the result of modulation of the second mode and harmonic disturbances, was observed,
Figure 1.6.

The digital complex demodulation technique (DCD) was used to quantify the
modulation of the second-mode disturbance.®® The digital complex demodulation

technique revealed that the low-frequency interaction, detected in the bispectral analysis,

arises from amplitude and phase modulations of the second mode, Figure 1.7. Of these
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modulations, the phase modulation was observed to be the dominant energy transfer
mechanism. Although useful in detecting the modulation of the second-mode disturbance,
the complex digital demodulation technique is limited as only a single frequency can be
analyzed at a given time.

The wavelet technique more completely describes the time and frequency
character of the flow. The wavelet analysis was applied to the transitioning hypersonic
boundary layer in Reference 31. The results show that in the nonlinear region, amplitude
modulation of the second-mode disturbance is significant, Figure 1.8. However, the
wavelet analysis adapts the time resolution to the frequency band of interest. An
increased time resolution of the wavelet is obtained at the expense of reduced frequency
resolution. For example, in Reference 31 the Morlet wavelet results in a frequency
resolution that is comparable to the analysis frequency, Af/f ~ 3. The frequency resolution
of the wavelet is thus poor at the relatively high frequencies of the second-mode
disturbance. This poor frequency resolution impedes the detection of the temporal

variations associated with the dominant second mode.

1.3 Objectives

The primary objectives of this work are to develop and apply high order spectral
analysis techniques to quantify the time varying and nonlinear dynamics of a
transitioning hypersonic flow. The time-varying analysis technique that is introduced
here does not suffer from the limitations of the previous wavelet analysis. A new
technique to characterize the nonlinear dynamics is also developed. This technique is

unique because it also identifies the time varying nature of nonlinear interactions, and
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does not have the long time averaging associated with the previous bispectral analysis.
These new analysis tools are demonstrated by application to hot-wire measurements that

were previously obtained in quiet tunnel stability experiments.
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APPROACH

2.1 Wind Tunnel Facilities and Experiments

2.1.1 Quiet Tunnel Technology

There is a need to obtain boundary layer stability measurements in an
environment that is an accurate representation of free flight. It is known that conventional
high-speed, high-Reynolds number wind tunnels generally have significant freestream
disturbance fields.*? As these elevated freestream disturbance levels hinder the ability to
simulate free flight conditions, the quiet wind tunnel technology was developed in order
to reduce the freestream noise levels.

In the early 1990's, the NASA Langley Mach 6 quiet tunnel that is equipped with

1.3 The nozzle

a quiet nozzle was installed in the nozzle test chamber facility, Figure 2.
test chamber is an open-jet blow-down facility with a stagnation pressure range of 100 -
200psia and stagnation temperature range of 790 - 830°R. The axisymmetric nozzle has a
throat diameter of 1.00in and exit diameter of 7.99in. The length from the throat to exit is
39.76in.

In order to provide a quiet freestream environment, the nozzle design incorporated
several features to maintain a large region of laminar boundary layer flow along the
nozzle wall. First, the nozzle surface is highly polished and manufactured to very precise
tolerances. Second, the slow-expansion nozzle features a straight wall section upstream
of the inflection point of the nozzle contour, Figure 2.2. The straight portion, in

conjunction with the large radius of curvature of the concave section of the nozzle,

inhibits the growth of Gortler vortices and hence delays transition.* Finally, an annular

10
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bleed slot is located just upstream of the throat. When the bleed slot is open, the suction
removes the incoming turbulent boundary layer from the settling chamber and allows a
new laminar boundary layer to develop on the nozzle wall. In addition to the nozzle
design, high density meshes and screens were located in the setting chamber to attenuate
disturbances. The combination of these features has proven to be successful in extending
the extent of laminar flow and thus creating a quiet freestream environment. The

performance of this tunnel is further discussed in Reference 32.

2.1.2 Lachowicz and Blanchard Experiments

Two hypersonic boundary layer stability experiments conducted in the NASA
Langley Mach 6 quiet tunnel are examined in the present research. Lachowicz and
Chokani®® measured the transitioning boundary layer over a flared-cone model, where the
radius of curvature of the flared region is 93.071in and the length of the 5 degree half
angle cone section is 10in, Figure 2.3. This model is designated 93-10. The cone model
was thin walled, and measurements were obtained under adiabatic wall conditions.
Blanchard and Selby®® conducted their experiments using the 91-6 flared-cone model.
The radius of curvature of the flared fegion is 91.44in and the length of the straight
region is 6in, Figure 2.4. Adiabatic and cooled wall conditions were examined for the 91-
6 cone; for the cooled case the wall temperature was 465 R. These two experiments thus
allow the effects of pressure gradient and wall cooling on the boundary layer stability to
be examined.

Single point hot-wire measurements were obtained at several streamwise

locations spaced at 0.25:n intervals. At each streamwise location, the measurements were

11
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taken at the location of maximum disturbance energy in the boundary layer. Table 2.1
lists the streamwise locations and corresponding stability Reynolds numbers for the 91-6
and 93-10 models. The two experiments were conducted at a stagnation temperature and
total pressure of 810 R + 3 R and 130psia + 2psia respectively, and the free-stream Mach
number is 5.91 + 0.08. These test conditions correspond to a unit Reynolds number of
2.82x10%1.

A 2.5um platinum-rhodium (10%) hot-wire operated by a constant voltage
anemometer (CVA) was the primary measurement device. A hot-wire in a high-speed

flow responds to a mixed mode of mass flux and total temperature®

!

ran
N —

pu

e T,

E:S”" (W)+ST"? (2.1.1)
At high overheat, the hot-wire becomes primarily sensitive to mass flux®

¢ o (o)

= =S, Go) (2.1.2)

The anemometer output was passed through an anti-aliasing, low-pass filter set at 1 MHz,

and then sampled at 2 MHz using a digital storage oscilloscope.

2.1.3 Constant Voltage Anemometer

The constant voltage anemometer (CVA) was patented by Sarma® in 1991 and
introduced as an alternative to the constant current (CCA) and constant temperature
(CTA) anemometers. The CVA system has several advantages over the CCA and CTA;
these include a larger bandwidth, higher signal-to-noise ratio, and relatively smaller

insensitivity to the cable length. It was the availability of the CVA that enabled the

12
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experiments of Lachowicz and Blanchard, as attempts to measure the naturally-occurring,
high-frequency boundary layer disturbances with CCA and CTA proved futile.'®

Similar to other thermal anemometry systems, the CVA operates by measuring
the convective heat loss from a sensing element in a fluid flow. The basic CVA circuit is
shown in Figure 2.5a% and consists of three main components: a stable DC reference
voltage, an inverted operational amplifier, and a T-resistor network (R, R», and Ry). The

voltage across the hot-wire can be written as

v, ==Ly 2.13)

From this equation, it is evident that the wire voltage, Vy, is constant for a given ¥; and
therefore is independent of the hot-wire resistance, Ry. It is this characteristic that gives
the CVA its name. A change in the convective heat transfer from the hot-wire alters the
hot-wire resistance Ry, and thus changes the current through the hot-wire, . By

applying Kirchoff's current law at the node of the T-resistor network:

E+eé =(1+§—2JVW + R, 1, + R,i, (2.1.4)

F
For a given wire voltage, a perturbation in the output voltage is linearly proportional to
the fluctuations in the wire current. For a large R, small changes in the wire current
appear as large changes in output voltage.
In the compensated CVA, Figure 2.5b, the resistor R, is replaced by a resistor-
capacitor combination whose function is to increase the frequency response of the
anemometer. In the absence of the RC-combination, the classical first order hot-wire

response

13
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(1) =6l (1) + Moy, ZEL @.15)

that arises from the thermal inertia of the wire determines the anemometer frequency

response. Sarma has derived the anemometer transfer function

RZ
' R, )" (1+T.s)
£(s)=— 1 IWR i = )b’ 2.1.6)
+
oS L e By |y VT
a)n wn Tc Ra'

The hot-wire time constant, Mcyy, that limits the frequency response, appears as a pole in
the transfer function. The hardware time constant, T¢

_CR.R,

T
c R,

.1.7)

appears as a zero, and can be selected to cancel the pole in the transfer function.
However, such an approach is time consuming as the hot-wire time constant is a function

of both wire overheat and Reynolds number®’

_l+a, d® pyey 1
" 1+2a, 4 'k, A+B\Re,

(2.1.8)

Figure 2.6 shows the variation of the hot-wire time constant, measured in a low-speed
flow at various wire Reynolds numbers and overheats. It is more productive to use partial

compensation whereby measurements are obtained with a fixed Tc

e (t)=e,t)+T, %) 2.1.9)
dt
And then in software, correct for the mismatch of T¢ and My, using

€rorr (1) = €1, (1) Lt Meyas (2.1.10)
1+T.s

to obtain:
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de! (t) de! (t)
N 2.1.11
dt © ( )

e;orr (t) = e;aw (t) + MCVA

The resultant frequency response can then be several orders of magnitude larger than that
of the hot-wire as it is limited by only the terms in the first bracket of equation 2.1.6.

The CVAs used in the work of Lachowicz and Blanchard had bandwidths of
350kHz and 400kHz respectively. Although ‘the amplitude response is flat up to the stated
bandwidths, the phase response is flat to a lower frequency. This limited phase response
may play a role in the interpretation of the results of high-order spectral analysis

presented below.

2.2 High Order Spectral Analysis

Time series signals, which are characterized as having a random or a high degree
of variability, can more conveniently be analyzed in the frequency domain.®® The
decomposition of a time signal into harmonic components of various frequencies is often

expressed as the power spectrum density (PSD)
P.(f)=(s()s°(1)) @2.2.1)
where S(f) is the finite Fourier transform of the time series s(f)

S(f)=lim [ s@ye™"di (222)

The power spectrum estimates the distribution of power among the frequency
components. The PSD of the hot-wire measurements in a laminar hypersonic boundary
layer undergoing transition can be used to infer the growth or decay of the second mode.

However, multiple peaks (or modes) are observed in the PSD. It is known that if modes
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are coupled through a nonlinear interaction mechanism, a phase coherence will exist
among them. The power spectrum does not preserve phase information, and thus we are
motivated to use high order spectral analysis techniques; in this work the bispectrum is
used to retain phase information. The PSD and bispectrum however employ the finite
Fourier transform that is a statistical average over a relatively long durgtion. Under this
condition, time local information, that is transient events, cannot be detected. However,
these are known to be characteristic of the breakdown to turbulence. Thus, in the present
work, we develop the short time Fourier transform (STFT) to characterize the transient

events in the distribution of power and the STFT bispectrum to identify transient

-nonlinear interactions.

2.2.1 Short-time Fourier Transform

The power spectrum density cannot detect any transients in the distribution of
power due to the relatively long analysis time. Hence, the STFT was developed in order
to realize the time varying nature of the power spectrum of a signal. The STFT is

obtained by sliding a running analysis window along the time series and is defined as”’

G (tf)= j[s(t’)y‘(t’ —0)| e ar (223)

This is graphically illustrated as steps 1 and 2 in Figure 2.7. The relatively short time
duration of the analysis window that is centered on the analysis time, ¢, acts to mask out
any part of the time series that is not in the local vicinity of the window, step 1. The fast
Fourier transform of the windowed time series yields a time local FFT, step 2. Thus the
STFT can be thought of as the local Fourier transform of the original time series at time 7.

For discretely sampled data, the next localized FFT is obtained by traﬁslating the analysis
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window #(¢-f) from time ¢ to time (¢ + 4t). If there is no overlapping and the window

length is Ngpr points, then the time resolution of the STFT is

At=At'(Nyer —1) 2.24)
where
At'=1/f (2.2.5)
The uncertainty principle40
Aw-At>+ (2.2.6)

indicates that there is a tradeoff between the frequency and time resolutions. That is the
use of a narrow analysis window results in excellent time resolution and poor frequency
resolution. Conversely, good frequency resolution requires the use of a long analysis

window, which therefore results in poor time resolution.

2.2.2 Bispectrum
The auto-bicoherence spectrum (or bispectrum) provides a measure of the
nonlinear (quadratic) phase coupling in the time series. The bispectrum in the present

work is defined as

S (£ + FuISCFIS(H )
ISCAISCHILISCH+ 1)1

b*(fi 1) = 2.2.7)

where S(f) is the Fourier transform of the Ngrr data points in the signal s(#). The
bispectrum takes on values between 0 and 1 because of the normalization with the

Fourier transform. Usually, the bispectrum is normalized by the power spectrum,
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S+ £ISCRISCR T

2.2.8)

b (fi.fa)=

However this definition does not necessarily bound values of the bispectrum between 0
and 1 for signals of short time duration.*! However the use of equation 2.2.8 requires less
computer memory storage and lower computation costs than equation 2.2.7. A
bispectrum value of one indicates that the triplet of waves with frequencies f;, /2, and f; +
/> are quadratically phase coupled. More specifically, the three frequency components, f;,
>, and f = f; + f> satisfy the phase relation
Lf = Lf, + £f, (2.2.9)
Bispectrum values between zero and one indicate partial coupling. At near zero values of
the bispectrum, the three components are statistically independent and of random phase.
The nonlinear interactions identified by the bispectrum are averaged over the
relatively long analysis time. The length of the analysis time, Nrrr, is shorter than the
entire time series of N points. Therefore the (N/Ngrr) number of bispectra are ensemble

averaged to yield a single auto-bispectrum, which we term here the Fourier bispectrum

<St(f1 +f2)S(f1)S(f2)|2>
ISCAISCELNiSCh+ /)

bpz(f,,fz)=< (2.2.10)

The symmetry properties of the bispectrum and Nyquist frequency limits allow
bispectrum to be displayed over the triangular region that is bounded by £2= 0, f; = /2, and

f1+f2=fyinthe (f}, f2) plane, Figure 2.8.
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2.2.3 STFT Bispectrum

One limitation of the Fourier bispectrum is that it spans a relatively long analysis
time and therefore it averages out any transient nonlinear phase coupled interactions that
may occur with the analysis time. Recently, the wavelet bicoherence, that combines the
time-frequency analysis of the wavelet and nonlinear interaction detection of the
bispectrum, has been proposed for the analysis of plasma turbulence.**** However,
Chokani observed that the wavelet analysis technique is poorly suited for analysis of
hypersonic laminar boundary layers. This is because the frequency resolution of the
wavelet is poor at the high frequencies of second mode instabilities. This motivated the
author to develop the STFT bispectrum as an alternative to the wavelet bispectrum to
detect transient nonlinear interactions. The STFT bispectrum can be written by
substituting equation 2.2.3 into 2.2.10 and integrating over the short time interval of the

analysis window

G, (1,f,+ £,)G,(L£,)G,(1.1, ) dt

r}

!
T

1 2

T—ZTIGs(t,J’I)Gs(t,fz)| dt Tj

by (T f1 fy) = 2.2.11)

G,(t.f,+1,) at

A comparison of equations 2.2.10 and 2.2.11 shows that whereas the Fourier bispectrum
averages out nonlinear interaction mechanisms over a relatively long analysis time, the
STFT bispectrum is integrated over a smaller analysis time 7. The computation of the

STFT bispectrum is graphically illustrated in Figure 2.9.
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The summed bispectrum and total bispectrum are convenient parameters to help
in the interpretation of the STFT bispectrum.*? The summed bispectrum, that is taken

along lines of constant f = f; + />

b (T, f)=—— ¥ by (T fi, ]y 22.12
YT, f) (f)f;*fz (T}, 12) ( )

is a measure of all the quadratic nonlinear interactions at frequency f over the short time

interval. The total bispectrum

b, (T)—mZb (T,.f) (2.2.13)

provides an indication of the degree of intermittent beha\;ior during the short time
interval.

When calculating the STFT bispectrum, the following parameters are of interest.
For the case where there is no overlapping of segments in the time or frequency domain,

the following relation is obtained

N
NFFTNbNE

=1 (2.2.14)
The number of points Nerr determines the frequency resolution, 4f = Fs / (Ngrr — 1). The
ratio (N/Ngrr) determines the number of segments in the STFT, M = N/Ngrr. The time
resolution (that is, the time between each segment), 4¢, is determined in equation 2.2.4.
Thus, once the STFT has been calculated, it is sub-divided into N, segments of Ng time
local FFTs over which the STFT bispectra is computed. The time duration covered by the
STFT bispectra is

AT = At(N, —1) (2.2.15)

It is noted that if N, =1, then the STFT bispectra is identically the Fourier bispectra.
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RESULTS AND DISCUSSION

The Results and Discussion section is arranged as follows. First, the STFT
analysis is presented to examine the time varying characteristics of the second mode and
its harmonics. These characteristics are quantified using the modulation indices, and also
qualitatively described using the high-order statistical moments of skewness and kurtosis.
Next the nonlinear interactions are quantified using the Fourier bispectrum. This analysis
shows that harmonic nonlinear interactions are the primary energy transfer mechanisms
for the long time-averaged dynamics. The results of the STFT bispectrum, that are then
presented, highlight the role of non-harmonic interactions in the observed transient
nonlinear mechanisms. In the above analyses, the three previously described test cases
are used to describe the effects of wall cooling and pressure gradient on the time varying

and/or nonlinear interactions.

3.1 Short-time Fourier Transform

For the STFT calculations, the number of points used to calculate the Fourier
transform is Ngrr = 256; therefore, the temporal resolution is At = 0.1275ms, and the

frequency resolution is 4= 7.84kHz.

3.1.1 Spectrogram

The contour plots of the magnitude of the STFT calculated from the hot-wire

measurements on the adiabatic 91-6 (baseline) model are shown for six measurement
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locations in Figure 3.1. At R = 1609, the second-mode disturbance is not discernible.
From R = 1680 to 1749, the second-mode is clearly detected and is centered on the
frequency of 289kHz. Over the range 1680 < R < 1749, the change in the intensity of the
contour along f = 289kHz indicates that the second-mode is weakly modulated (Figures
3.1b and 3.1c). For R > 1815, the first and second harmonics (f = 578kHz and 867kHz,
respectively) of the second-mode are also detected. Over this range, the weak modulation
of the harmonics and a stronger modulation of the second-mode is also observed. The
modulation of the harmonics was not observed in the previous wavelet analysis due to its
poor frequency resolution.®! The frequency resolution in the STFT is 15.625kHz; this
resolution is 14 times smaller than the frequency resolution at the wavelet scale of the
second-mode in the wavelet analysis. Furthermore, because of the limited bandwidth, the
wavelet analysis cannot resolve the wavelet scales associated with the harmonic
frequencies. However, the time and frequency representation of the STFT clearly reveals
the transient nature of both the second-mode disturbance and its harmonics.

The effect of wall cooling on the second mode and its harmonics is examined in
Figure 3.2. These plots of the STFT illustrate the destabilizing effect of wall cooling on
the boundary layer stability. Due to wall cooling, the second-mode appears at a more
upstream station, R = 1609 (Figure 3.2a), compared with R = 1680 for the baseline case
(Figure 3.1b). The second-mode is centered at a higher frequency, around 306kHz. This
shift to a higher frequency occurs on account of the “tuning” of the frequency of the
second-mode to the boundary layer thickness. Wall cooling in a hypersonic boundary
layer flow reduces the boundary layer thickness and consequently the second mode

frequency is increased. A well-defined first harmonic for the cooled wall is detected at R
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= 1749 (Figure 3.2¢); c.f R = 1815 for the baseline case (Figure 3.1d). A feature common
to the baseline and cooled wall cases is the observed modulation of the second-mode
frequency and its harmonic. However, as the second mode and harmonic first appear
more upstream than in the baseline case (Figure 3.2f), the initial breakdown to turbulence
at R = 1940, as determined from the filling in of the spectra, is observed. This is
illustrative of the destabilizing effect of wall cooling.

The effect of the pressure gradient on the transient behavior can be observed by
comparing the STFT results for the adiabatic 93-10 model presented in Figure 3.3 with
the baseline case. At R = 1879, Figure 3.1e and 3.3a, the 93-10 model which has a
smaller adverse pressure gradient, shows only the presence of a second-mode
disturbance, whereas the second-mode and its harmonics are observed in the baseline
case. It is also noteworthy that the second-mode occurs at a lower frequency on the 93-10
model, centered on 222kHz, compared to 289kHz on the baseline case. For the 93-10
model, the boundary layer thickness is reduced less on the flare of the model because of
the smaller adverse pressure gradient; this results in the lower frequency. At R = 1940,
Figure 3.1f and 3.2b, the first harmonic is weakly detected on the 93-10 model, whereas
the first and second harmonics are clearly observed on the baseline case. It is only further
downstream at R = 2058 and 2114 that a harmonic clearly develops on the 93-10 model.
At the most downstream station on the 93-10 model the STFT shows that spectral
broadening is occurring without the clear appearance of a second harmonic as is observed

at the most downstream station on the 91-6 model.
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The STFT analysis clearly shows the time varying behavior of the second mode
and its harmonics. Overall, the effect of wall cooling is more pronounced than the effect

of adverse pressure gradient on this time varying behavior.

3.1.2 Amplitude and Phase Modulations

The amplitude and phase modulation of the second-mode disturbance can be
inferred from the STFT. The time-series of the amplitude and phase of the STFT are
extracted by taking a “slice” at the frequency of the second-mode, f = f,. This is
graphically illustrated in Figure 3.4. Since the STFT G(¢, f) has real and imaginary parts,

its amplitude and phase are written as

G, &, £)| = V=2 () + 3°(0) (3.1.1)

N

L2

£G,(t.f)= tan"‘[mié)) (3.1.2)

The amplitude and phase of G(#, f,) at three measurement locations are shown in Figure
3.5 for the baseline case. At R = 1680 there is little amplitude modulation, however, the
amplitude modulation becomes more marked as R increases (Figures 3.5a-c). The phase
modulation shows strong, regular variations of +n/2 rad throughout the measurement
range for the baseline case (Figures 3.5d-f).

The effect of wall cooling on the amplitude and phase of Gy(t, f;) is shown in
Figures 3.6a-c for the three measurement locations, R = 1680, 1815 and 1940. At R =

1680, the amplitude modulation is observed to be greater for this cooled wall case, Figure
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3.6a than the baseline case, Figure 3.5a. However, for the cooled wall case, while the
amplitude modulation is also clear at R = 1815, the amplitude modulation at the most
downstream station (R = 1940) is reduced due to the initial breakdown to turbulence of
the transitioning flow. The phase modulation examined in Figures 3.6d-f again shows
strong, regular variations of +n/2 rad throughout the measurement range as observed in
the baseline case.

The amplitude and phase of Gi(¢, f;) for the 93-10 case is shown in Figure 3.7.
The increase in the amplitude modulations from R = 1879 to R = 2114 (Figures 3.7a-c)
closely resembles the behavior in the baseline case for R = 1680 to R = 1815 (Figures
3.5a-b). Hence, there is little effect of pressure gradient on the amplitude modulation. The
phase modulation (Figure 3.7d-e) exhibits the same strong, regular variations that are
observed for both the baseline and cooled wall cases.

The amplitude and phase modulation indices (a and f, respectively) that

characterize the nonlinear interactions are calculated using the expressions™

We.e.1-te.6.AF)
(G.(.1))

(3.1.3)

o=

p=(G.0.1)) (3.1.4)

Although the STFT plots in Figures 3.1-3.3 were calculated using only 2'? data points,
the entire time series of 2'” data points of the hot-wire measurements are used to compute
the modulation indices. The effects of the wall cooling and adverse pressure gradient are
examined through the downstream evolution of the modulation indices in Figure 3.8. For

the baseline case, there is little variation in the amplitude modulation over the upstream
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range of measurements, R < 1766, Figure 3.8a. Downstream of R = 1766, a gradually
decreases. The effect of wall cooling is to cause a decrease in o at a more upstream
station, R = 1645, compared to R = 1766 for the baseline, Figure 3.8a. For the cooled
wall,  changes from its nearly constant value of 0.65 to a minimum value of 0.3 at R =
1847; in contrast for the baseline case, « is initially at 0.65 and decreases only to a value
of 0.5 at R = 1910. For the cooled wall downstream of R = 1847, there is a sharp increase
in a. The amplitude modulation for 93-10 case shows no discernible variation over the
range of measurement and indicates that there is little effect of this pressure gradient on
the non-linear interactions, Figure 3.8a.

While o shows small variation due to pressure gradient or large changes due to
wall cooling, there is little effect on S, It remains essentially constant and at a high value,
= 0.9, throughout the measurement range for all cases (Figure 3.8b).

The ratio o/f3is presented in Figure 3.8c. Over the measurement range, o/f3is less
than unity for all three cases indicating the more dominant role of phase modulation in
the energy transfer mechanisms. However, for the cooled wall case, it is observed that
during the latter stages of transition, the relative role of amplitude modulation becomes
more important. These observations regarding the relative role of the amplitude and
phase modulations are in agreement with results from the digital complex demodulation

technique.*

3.1.3 Kurtosis and Skewness

The effects of the pressure gradient and wall cooling on the kurtosis and skewness

are shown in Figure 3.9. The kurtosis and skewness are computed from the time-series of
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the magnitude of the STFT at the frequency of the second-mode. The kurtosis is a

normalized fourth moment, which has a value of three for a Gaussian distribution

4

K=—-3(6,6.. 1) 1) (3.1.5)

4
No n=1

The skewness is a normalized third moment, and is zero for a Gaussian distribution

3

N:# gq& . )|~ 22) (3.1.6)

A=

For all three cases in general, the value of the kurtosis progressively decreases with
increasing Reynolds number, Figure 3.9a. However the crossing of the value of three
occurs most upstream at R = 1715 for the cooled wall case, at R = 1847 for the baseline
case, and at R = 2029 for the 93-10 case. As the kurtosis is a qualitative indicator of
nonlinearity, this result confirms the destabilizing role of both adverse pressure gradient,
comparing the 93-10 result and the baseline, and of wall cooling, comparing the baseline
and 91-6 cooled cases. In the previous section we have also observed that amplitude
modulation plays an increasingly significant role with wall cooling. In the kurtosis we
also observe an additional crossing of the value of three for the cooled wall case, at R =
1900. This coincides with the increase in the amplitude modulation index.

The variation in the skewness also shows a correlation with the evolution of the
amplitude modulation. In Figure 3.9b for the baseline and 93-10 case, the skewness
monotonically decreases from a value of two towards zero with increasing Reynolds
number. As is previously seen for these two cases, there is only a small variation in
amplitude modulation indices. However for the wall cooled case, the skewness decreases
more rapidly, and is negative over the range 1750 < R < 1860. The range of negative

skewness coincides with the sharp decrease in the amplitude modulation index. The
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subsequent sharp increase in the skewness coincides with increasingly pronounced role of

amplitude modulation.

3.1.4 Harmonic Frequency Band

The time-series of the amplitude and phase of the first harmonic (f = 2f;) were
also extracted from the STFT using the previously described procedure. The amplitude
and phase of G(t, 2f,) for the baseline case is shown in Figure 3.10, for three stations, R
= 1815, 1879 and 1940. The variation in the amplitude at R = 1815 for the baseline case
has very low mean and fluctuating values, Figure 3.10a. At the more downstream
locations, the mean value is increased, Figures. 3.10b and 3.7c. For each R location, the
phase modulation shows strong, regular variations over +n/2 rad, Figure 3.10d-f.
Therefore, the downstream evolution of the harmonic is similar to that of the second-
mode observed in Figure 3.5.

At R = 1815 for the cooled wall case, Figure 3.11a, the mean and fluctuating
values of the amplitude are larger than the baseline case and exhibit an intermittent
behavior. However, as R increases for the cooled wall case, the mean and fluctuating
values of the amplitude decrease, Figure 3.1 1b-c. The intermittent behavior also appears
to become more pronounced at the downstream stations. The low values of the amplitude
of Gy(t, 2f) at the R = 1940 station for the cooled case are associated with the transfer of
energy from harmonic frequency and an initial breakdown to turbulence. Again, the
phase modulation, Figure 3.11d-f, shows a regular variation at each measured station.

The effect of the pressure gradient is examined in Figure 3.12a-c. The amplitude

of Gyt 2f,) is initially low and only shows moderate increase at the downstream
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locations. The levels at the two downstream locations are, however, slightly higher than
that of the baseline case. The phase modulation has the same regular variations of the
previous cases.

Amplitude and phase modulation indices of G(t, 2f;) are shown in Figure 3.13.
The amplitude modulation indices, Figure 3.13a, show a similar trend to that of the
second mode, Figure 3.8a. For the baseline case, « decreases with increasing R. For the
cooled wall, there is a small initial rise upstream of R = 1750, downstream of which the
amplitude modulation index decreases. The amplitude modulation continues to decrease
until R = 1850, where there is then a sharp increase. It is noted that the minimum in the
amplitude modulation for both the second mode and the harmonic of the cooled wall case
occur at approximately the same location. For the weaker pressure gradient case 93-10,
the amplitude modulation is essentially constant and is at a lower level than the baseline
and cooled models.

The phase modulation of Gx(t, 2f,) remains at a constant value of g = 0.9 for all
three cases over the range of measurement, Figure 3.13b. This trend is similar to that
observed for the second-mode, Figure 3.8b. However the relative role of the amplitude
and phase modulation differs for the harmonic. In Figure 3.13c, it is observed that for the
cooled wall case the amplitude modulation is more dominant (¢8> 1) for the range 1700
< R < 1800 and 1900 < R < 2000. This is in contrast to the second mode in which the
phase modulation is always dominant, Figure 3.8c. Similar to the second mode behavior,
the ratio o7/ indicates that the phase modulation is more dominant for the harmonic in

the baseline and 93-10 cases, Figure 3.13c.
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The kurtosis and skewness of the magnitude of Gy(t, 2f,) for the three cases are
examined in Figure 3.14. In general, the trends are similar to those of the second-mode,
Figure 3.9a; however, the overall levels are higher for the harmonic frequency. Each of
the three cases are initially well above three and then decrease quickly. For the baseline
and pressure gradient case, the kurtosis decrease to a value of three and then stays
relatively constant. The kurtosis for the cooled wall case reaches a minimum value of
three at R = 1815 and immediately begins to rise to a high value. The skewness (Figure
3.14b) exhibits many of the same features as the skewness for the second-mode (Figure
3.9b), however, the initial and minimum levels are higher for the harmonic and do not go
below zero. The skewness for both the baseline and pressure gradient case decrease as R
increases. The cooled cone model shows a minimum skewness at R = 1815 for both the
harmonic and second mode. For R > 1815, the skewness increases.

Overall, the STFT is effective in identifying the transient behavior of theA
harmonic of the second mode. Such behavior cannot be observed with the wavelet
analysis technique due to its poor bandwidth resolution. The observed transient behavior
of the harmonic occurs at a more downstream location than the onset of the second

mode's transient behavior.

3.2 Fourier Bispectrum

For the PSD and Fourier bispectrum calculations, the number of points used to
calculate the Fourier transform is Ngrr = 256 and the number of ensembles is Nz = 512,

which yields a frequency resolution of 4f = 7.84kHz. It should be noted that although a
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higher frequency resolution could be obtained for the PSD, this lower resolution was used
to ensure a consistent comparison with the bispectrum.

In the bispectrum phase information is retained. However, as the phase response
of the CVA is not constant over the entire frequency range of interest (Figure 2.8b), only
the streamwise evolution of a given nonlinear interaction can be quantitatively examined.
Also, it is possible to only qualitatively compare different nonlinear interactions at a

given measurement location or as they evolve downstream.

3.2.1 Baseline

The baseline case, 91-6 adiabatic cone, is first examined. The PSD at stations R =
1609, 1680, 1749, 1815, 1879, and 1940 are shown in Figure 3.15. For clarity the
subsequent spectra are shifted up one decade. The streamwise evolution of the second
mode that is centered on f, = 289kHz is seen. At the most upstream station, R = 1609, the
second mode is barely distinguishable from the background noise. Further downstream at
R > 1680, the amplitude of the second mode increases and a spectral broadening of its
sidebands is observed. For R > 1815, the appearance of peaks centered on the harmonic
frequencies of 2f, and 3f, are a qualitative indicator of nonlinear interactions.

The corresponding plots of the Fourier bispectrum are shown in Figure 3.16. In
these plots, the diagonal dashed lines denote harmonic nonlinear interactions; that is the
frequency pair (f;, f2) satisfies the relation f; + f> = f,, 2f,, or 3f.. Recall also that the
Fourier bicoherence is averaged in the sense that a relatively long time record is

analyzed. The plots of the Fourier bicoherence at R = 1609 and 1680, Figures 3.16a and

31




Final Technical Report - F49620-01-1-0105

3.16b, show no significant levels. At R = 1749, Figure 3.16¢c, a peak is observed at (f,,
&), where &f ~ 23kHz. This interaction peak may be interpreted as

L=, -5)>o 3B.2.1)

(f,+d)-f, > (32.2)
which denotes interactions of the second mode and its sidebands. At R = 1815, Figure
3.16d, additional interaction peaks are observed at (f,, fo), (2fo, fo), and (2, &f). The
interaction peak (f;, f;) indicates that the fundamental couples with itself to force the
growth of the first harmonic, 21,

fo+f, =2/, (3.2.3)
A similar interpretation of the interaction peak (2f;, fo) explains the presence of the
second harmonic that is observed in the Fourier spectrum. The interaction peak (2f,, &f)
indicates the interaction of the harmonic-with its sidebands. At R = 1879 and R = 1940,
Figure 3.16e and 3.16f, additional peaks include (&, &) and (3f,, &). The interaction peak
(3f,, &) indicates the interaction of the second harmonic with its sidebands that are
similar to the sideband interactions associated with peak (2f;, &). The interaction peak
(& &) indicates the low frequency modulation of the second mode. Note also that the

interaction peak (f,, ), that is also observed at R = 1749 and 1815, is broader.

3.2.2 Effect of Wall Cooling

A comparison of the PSD for the cooled wall, Figure 3.17, and baseline case,
Figure 3.15, shows the earlier appearance of the second mode at f, = 306kHz (compare to

the spectra at R = 1609) and the harmonic (compare to the spectra at R = 1680). The
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streamwise evolution of the spectral peaks at f, = 306kHz, shows that while the
amplitudes increase significantly from R = 1609 - 1749 for both the adiabatic and cooled
wall cases, for R = 1749 - 1879 the increase is relatively small for the cooled wall case
and relatively large for the adiabatic wall. This apparent decrease in the growth rate for
the cooled wall is a qualitative indicator of the stronger nonlinear interactions in the
cooled wall case. For R = 1940, the spectral peaks associated with the second-mode and
the harmonic frequencies are slightly reduced in amplitude and begin to broaden
significantly. This is indicative of the beginning of the breakdown to turbulent flow for
the cooled wall case.

The stronger nonlinear interactions suggested by the power spectra for the cooled
wall case are confirmed in the comparison of the plots of the Fourier bispectrum, Figure
3.18 for the cooled wall and Figure 3.16 for the adiabatic wall. The multiple interaction
peaks (fo, ), (fo, fo), (2fos &), and (2o, fo) that are seen at R = 1749 for the cooled wall,
Figure 3.18d, are not seen until further downstream at R = 1879 for the adiabatic wall
flow, Figure 3.16e. At R = 1879 for the cooled wall, Figure 3.18f, some of the interaction
peaks are less pronounced since the boundary layer flow is in the initial stages of

breakdown to turbulent flow.

3.2.3 Effect of Pressure Gradient

The effect of pressure gradient can be seen in the power spectra in Figure 3.19. At R =
1879, only the second mode centered on f, = 222kHz is observed, where as for the
baseline case the first and second harmonics are seen at R = 1879 for the baseline case.

This is a qualitative indication that the more adverse pressure gradient in the baseline
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case promotes weaker nonlinear interactions. This is confirmed in the corresponding
bispectrum in Figure 3.20. At R = 1879, no significant quadratic nonlinear interaction
peaks are noted in the bispectrum, Figure 3.20a, where as several peaks are seen at R =
1879 for the baseline case, Figure 3.16e. At R = 2114, Figure 3.20e, additional peaks are
observed at (3%, &), (3fo fo)> and (2f5, 2f;). These peaks, that are associated with the third
harmonic, are observed for the 93-10 case since the frequency of the second mode is
lower and its resulting third harmonic (888kHz) is less than the Nyquist frequency, Fy =
1000kHz.

Overall the Fourier bispectrum quantifies the nonlinear interactions that explain
the presence of harmonics in the spectra. A low frequency nonlinear interaction that may
be associated with previously observed amplitude and phase modulations is also

observed. The effect of wall cooling is to make these interactions more pronounced.

3.3 STFT Bispectrum

For the STFT bispectral analysis the number of points used to calculate the
Fourier transform is Nggr = 256, the number of STFT bispectrum is N = 7, and the
number of ensembles for each STFT bispectra is Ny = 73. These yield a temporal
resolution in the STFT of At = 0.1275ms and a time duration in the STFT bispectra of AT
= 9.18ms. In the discussion below the time duration in the STFT bispectrum is referred to
as a segment, and seven (N = 7) segments cover over the analysis period. The frequency
resolution is Af = 7.84kHz. The same frequency resolution is used in the Fourier spectra

and bispectra so that its’ interpretation in relation to the STFT bispectra is unambiguous.
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In the subsequent figures, the total bispectrum is shown in part a), the summed
bispectrum in parts b) and f), the STFT bispectrum in parts c) and g), and, for sake of
completeness, the corresponding STFT and time series segments in parts d), h) and e), i),
respectively. The time histories of the interaction peaks (&, &), (&, 1), (fo, fo), and (2o,

/) that are measured from the STFT bispectrum are also shown in part a).

3.3.1 Baseline

The transient nonlinear interactions for the baseline case are examined in Figures

3.21 - 3.32. The total bicoherence versus time at R = 1609, Figures 3.21a and 3.22a, show
that there is a peak in 5’ (T ) at segment [5], but it is otherwise at a low level for the other

segments. This peak indicates that there are transient nonlinear interactions. The
corresponding summed bicoherence at segment [5], Figure 3.22b, shows that the transient
event is associated with nonlinear interactions that occur in the frequency bands 100-190,
210-290 and 300-350kHz. The plot of the STFT bicoherence in Figure 3.22¢ shows that
the nonlinear interactions lie in diagonal (f; + f2) bands that are distinct and different from
the harmonic interactions. A comparison of the Fourier bicoherence, Figure 3.16a, and
the STFT bicoherence plots at segments [1], [3], [S] and [7], Figures 3.21c, 3.21g, 3.22¢
and 3.22g, shows that while the Fourier bicoherence averages out the transient events, the
STFT bicoherence successfully identifies these.

The nonlinear interactions at R = 1680 are similar to R = 1609 and are presented
in Figures 3.23 and 3.24. The levels of the individual interactions peaks, Figures 3.23a
and 3.24, were invariant from R = 1609 to R = 1680, indicating that the transient

nonlinear interactions associated with these pairs remain insignificant. The variation in
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total bicoherence for R = 1680 also shows behavior similar to R = 1609 in that it remains
flat except for a peak at segment [5]. The plot of the STFT bicoherence for segment [5]
shows that the transients are primarily non-harmonic, low frequency interactions, Figure
3.24c. These interactions are centered on frequency bands 100-200, 230-280, and 310-
350kHz, Figure 3.24b.

The transient nonlinear interactions at R = 1749 are examined in Figures 3.25 and
3.25. At this station, the Fourier spectra, Figure 3.15, shows a pronounced peak at the
frequency of the second mode. The total bicoherence, Figures 3.25a and 3.26a shows a
peak at segment [1] and a more pronounced peak at segment [5]. The interaction peak at
(o, f>) indicates that there is strong forcing of the second mode by itself over the entire
analysis period. The summed bicoherence, Figures 3.25b, 3.25f, 3.26b and 3.26f, shows
that the interactions in the frequency band centered on the most amplified second mode
and in the frequency band 0-50kHz are time invariant. At segment [5], Figure 3.26b, there
are several bands of nonlinear interactions, with the transient interactions strongest in the
100-200kHz frequency band. Thus, in the corresponding STFT bicoherence, Figure
3.26c¢, in addition to the harmonic interaction, f; + f> = f;, strong non-harmonic interaction
bands are also present. However, while the harmonic interaction is invariant over the
analysis period, Figures 3.25¢, 3.25g, 3.26¢ and 3.26g, the non-harmonic interaction is
intermittent. It is also interesting to note the temporal evolution of the two interaction
peaks (&, &) and (£, /), which respectively indicate modulation of the second mode and
harmonic forcing. Neither peak is simultaneously high; and when the interaction peak (&,
&) has a relatively large value, the interaction peak (f,, f;) tends to have a relatively small

value. This may suggest that different energy transfer mechanisms take place during the
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analysis period. Additionally, the level of all of the interaction peaks in Figure 3.25 and
3.26a are higher than those observed at R = 1609 and 1680.

The transient nature of the nonlinear interactions R = 1815 is described by the
variation in the total bispectrum in Figure 3.27a and 3.28a. Peaks are observed at
segments [3] and [5]. While the peak at segment [5] is due to transient interactions
centered on 100-200kHz similar to those observed in Figures 3.26¢ and 3.24c, the peak at
segment [3] is slightly different. Comparing the summed bispectrum at segment [3],
Figure 3.27g, with Figures 3.27c¢, 3.28¢, and 3.38g, it is observed that the pair (&, &) is
only present at segment [3]. Another feature of the interactions at R = 1815 is the
increased level of the pair (f;, f;) in Figure 3.27a and 3.28a c.f R = 1609 - 1749.

The temporal behavior of the interactions at R = 1879 is seen from the total
bicoherence and interaction peaks of the seven consecutive segments in Figures 3.29a
and 3.30a. The variations in the data show that there are periods of strong broadband
nonlinear coupling as well as periods without significant broadband interactions. This is
inferred as the interaction peak (f;, f5) is approximately equal to 0.6 over the analysis
period, and the interaction peak (&, &) is relatively high (=0.3 - 0.4) at segments [1]-[4],
but then relatively low (=0.1 - 0.2) for the segments [5]-[7]. The summed bicoherence at
segments [1], [3] and [7], Figures 3.29b, 3.29f and 3.30f, respectively, show that the
strong interaction bands are in the frequency ranges 25-100, 250-350, 510-630 and 800-
900kHz. The strongest interaction occurs in the low frequency band 25-100kHz. At
segment [5], strong nonlinear interactions occur in the 50-100, 110-180 and 230-300kHz
frequency bands. These non-harmonic interaction bands are clearly seen in the STFT

bicoherence, Figure 3.30c, but do not occur in the other segments, Figures 3.29¢, 3.29g
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and 3.30g. The STFT, Figures 3.29d, 3.29h, 3.30d and 3.30h, shows peaks at the second
mode and harmonic frequencies; thus strong harmonic interactions are observed over the
entire analysis period. As at the upstream measurement stations, the transient nonlinear
interactions occur at frequencies that are less than the frequency of the second mode.

The total bispectrum at R = 1940, Figure 3.31a and 3.32a, shows only a slight
variation in its level over the analysis period. The apparent absence of significant
transient nonlinear interactions is suggested further by the similarity in the STFT

bispectra at each analysis time, Figures 3.31c, 3.31g, 3.32c, and 3.32g.

3.3.2 Effect of Wall Cooling

The transient nonlinear interactions at R = 1609 are examined in F igures 3.33 and
3.34. The variations in the total bicoherence and in the interaction peaks measured from
the STFT bispectrum show that transient nonlinear interactions are present. The plots of
the summed bicoherence, Figure 3.33b, 3.33f, 3.34b, and 3.34f, show that the transient
nonlinear interactions are only strong in segment [S]. In this segment the interactions
occur in three distinct frequency bands, 100-200, 210-305 and 310-370kHz. The strongest
interactions occur in the 100-200kHz frequency band. Although the STFT, Figures 3.33d,
3.33h, 3.34d and 3.34h, clearly show the second mode, harmonic interactions are not seen
in the segments [1], [3] nor [7], during which there are no low frequency transient
nonlinear interactions.

Further downstream at R = 1680, the peak in the total bicoherence at segment [6]
indicates that a transient nonlinear interaction has occurred, Figure 3.35a and 3.36a. It is

also observed that during the downstream evolution of the disturbances, the level of the
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frequency pair (f,, &) has increased while the other frequency pairs have remained at the
same level, Figure 3.35a and 3.36a. The transient nature of the interactions at frequency
pair (f,, &) are clearly seen as a peak at segment [5] in Figure 3.35a and 3.36a and are
also detected in the summed bispectrum (10-40kHz and 300-320kHz) and in Fourier
bispectrum at segment [5], Figure 3.35f and 3.35g, respectively.

The plot of the total bicoherence at R = 1749, Figures 3.37a and 3.38a, shows that
transient nonlinear interactions occur. It is seen in Figure 3.37a and 3.38a that the
interaction (&, &) has become more developed. The STFT bicoherence, Figures 3.37c,
3.37g, 3.38c and 3.38g, show that the phase coupled harmonic interactions, f; + f> = fo,
2f,, or 3f,, are present over the entire analysis period. These phase coupled harmonic
interactions are also seen as the peaks centered on f,, 2f,, and 3f; in the plots of the
summed bicoherence, Figures 3.37b, 3.37f, 3.38b and 3.38f. In segment [5], transient
nonlinear interactions are seen in the 60-200 and 210-280kHz frequency bands. These
interaction bands are also pronounced in the corresponding STFT bicoherence, Figure
3.38d.

At R = 1815, the level of the total bicoherence has increased, indicating the
downstream growth of nonlinear disturbances, Figure 3.39a and 3.40a. The frequency
pairs (&, &) and (f,, f5) are now at much higher levels than the previous locations and
also exhibit transient behavior, Figure 3.39a and 3.40a. From the summed bispectrum
(Figure 3.39b, 3.39f, 3.40b, and 3.40f), there is no evidence of the low frequency non-
harmonic transient interactions such as those observed in Figure 3.38b. It is noted in the
STFT bispectrum figures that the interaction pair (f,, &) has become broader at this

measurement location.
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The transient nonlinear interactions at R = 1879 are examined in Figures 3.42 and
3.43. There are very large variations in the STFT bicoherence interaction peaks at (df, Jf)
and (%, f>), Figures 3.42a and 3.43a. The relative magnitudes of the interaction peaks
show that in these latter stages of the nonlinear region, there are transient events
associated with the interactions (&, &) and (f;, f;), Figures 3.42a and 3.43a. The summed
bicoherence, Figures 3.42b, 3.42f, 3.43b and 3.43f, shows that in these latter stages, the
nonlinear interactions are of a very low frequency, 0-100kHz.

At R = 1940 the initial effects of the breakdown to turbulent flow are observed.
The magnitude of the total bispectrum has increased when compared to the previous
stations, while the interactions pairs in Figures 3.43a and 3.44a have begun to decrease.
This decrease is attributed to the spreading of the energy over the disorganized broadband
nonlinear interactions present in the STFT bispectrum, Figure 3.43c, 3.43g, 3.44c, and

3.44g.

3.3.3 Effect of Pressure Gradient

The transient nonlinear interactions for the 93-10 adiabatic cone model are
examined in Figures 3.45 - 3.54 at R = 1879, 1940, 2000, 2058, and 2114 in order to
examine the effects of a smaller pressure gradient. At R = 1879, the total bispectrum and
frequency pairs in Figure 3.45a and 3.46a exhibit transient behavior, however the values
are low in magnitude. The absence of significant peaks in the STFT bispectrum (Figure
3.45¢c, 3.45g, 3.46¢, and 3.46g) confirm the low levels of nonlinear interactions. This is in
contrast to the baseline case in which transient and steady nonlinear interactions are

prominent in the STFT bispectrum, Figure 3.29¢, 3.29g, 3.30c, and 3.30g.

40




Final Technical Report - F49620-01-1-0105

At R = 1940, the level of the total bicoherence has increased and exhibits a peak
at segment [6], Figure 3.47a and 3.48a. This peak is an indicator that transient nonlinear
interactions exist. In Figure 3.47a and 3.48a, the frequency pair (Jf, Jf) has increased in
magnitude and also shows a transient behavior with a peak at segment [3].

Further downstream, the total bicoherence at R = 2000 (Figure 3.49a and 3.50a)
shows peaks at segment [2] and [5]. The intermittent nonlinear interactions associated
with the peak at segment [5] is again due to low frequency interactions, Figure 3.50b and
3.50c. The interaction peaks (f,, &) and (f,, f5) are elevated and also show some transient
behavior, Figure 3.49a and 3.50a.

The total bicoherence continues to increase in magnitude at R = 2058 and at this
station is highest at segment [5], Figure 3.51a and 3.52a. Similar to previous cases, the
STFT bispectra at segment [5] show non-harmonic interactions, Figure 3.52c. From the
summed bicoherence at segment [5], it is observed that these transient nonlinear
interactions are broadband in nature, Figure 3.52b.

Finally, for R = 2114 the total bicoherence continues to increase in magnitude,
Figure 3.53a and 3.54a, and tends to vary regularly. The levels of the interaction peaks
(&, &, (fo, ) and (2f,, f>) also have increased as the nonlinear interactions continue to
evolve. The more pronounced transient nonlinear interaction occurs at segment [3],
where a significant low frequency peak is observed in the summed bicoherence, Figure
3.53g.

The STFT bicoherence identifies and quantifies both transient and steady

nonlinear interactions. The steady nonlinear interactions are also observed in the Fourier
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~ bispectrum, and are associated with primarily harmonic interactions. However, the

transient nonlinear interactions are non-harmonic and broadband in nature.
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CONCLUDING REMARKS

4.1 Summary of Results

High order spectral analysis (HOSA) tools that can capture the nonlinear and time
varying characteristics of fluid flows are developed. These tools provide new insight into
the dynamics of hypersonic transitioning flows. This insight is important for the
development of transition prediction methods and techniques to control transition.

The HOSA tools are applied to previously obtained uncalibrated hot-wire
measurements. The hot-wire was operated by a constant voltage anemometer (CVA) and
the measurements obtained in a quiet (that is low disturbance freestream) Mach 6 tunnel.
The uncalibrated hot-wire measurements document the stability of hypersonic
transitioning boundary layer subject to the effects of wall cooling and adverse pressure
gradient. These effects of the nonlinear and time varying characteristics are examined
using the short-time Fourier transform (STFT), the Fourier bispectrum, and the STFT
bispectrum. The most pertinent findings of the application of these methods can be
summarized as follows.

The STFT is used to quantify the time varying characteristics of the dominant
second mode and its first harmonic. The STFT clearly identifies the modulation of the
second mode and its harmonic as the boundary layer undergoes transition. The STFT
analysis quantifies that phase modulation is the primary energy transfer mechanism from
the second mode during the hypersonic transition. However, during the latter stages of
transition amplitude modulation plays an increasingly important role. In the present work,

wall cooling is observed to have a more pronounced effect than adverse pressure gradient
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on destabilizing the flow and thus resulting in an earlier onset of nonlinear interactions.
Similar observations were made in previous work employing the digital complex
demodulation (DCD) technique and the wavelet analysis. The DCD is limited to analysis
of a single frequency at a time, and the wavelet analysis, with a sinusoidal basis function,
suffers from poor resolution at the high frequencies characteristic of the dominant second
mode.

The Fourier bispectrum is used to quantify the quadratic phase coupled
interactions that arise as the transitioning hypersonic flow moves from the linear region
into the nonlinear region. The peaks in the Fourier bispectrum indicate forcing of the first
and second harmonics, and clarify the dominant role of the most unstable second mode
disturbance. In the latter stages of the nonlinear region, low frequency phase coupled
interactions are also identified in the Fourier bispectrum, and are associated with the
amplitude and phase modulation that are observed in the STFT analysis. Thus in the
initial stages of the nonlinear region harmonic band interactions play the more important
role in energy transfer; in the latter stages of the nonlinear region the low frequency
interactions play the more dominant role as the flow breaks down to turbulence. The
effect of wall cooling and adverse pressure gradient is to advance the onset of the
quadratic phase coupled interactions.

The author developed the STFT bispectrum to identify and quantify the time-
varying nature of the nonlinear interactions. This new HOSA tool combines the time
localization characteristic of the STFT and nonlinear identification feature of the
bispectral analysis. The STFT bispectrum analysis shows that the forcing of the harmonic

is intermittent, which also suggests that the energy transfer is transient. This information
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is “hidden” in the Fourier bispectrum because of its long time average. In addition, the
transient energy transfer is observed to occur within relative low frequency, non-
harmonic, broad bands. These transient interactions appear to play a role in the transition

of the hypersonic boundary layer.

4.2 Future Work

High order spectral analysis techniques provide additional insights into the
dynamics of the transitioning hypersonic flow other than the limited information of the
power spectrum. As a first step, the observed time-varying and nonlinear characteristics
must be simulated in transition prediction methods. These characteristics are observed to
be important in the latter stages of transition and must be modeled if the reliability of the
transition prediction tools is to be improved. The improved understanding of the
transition process provided by HOSA techniques has the potential to suggest new
approaches for the control of transition. For example, a control method directed at
interrupting the periodic and transient low frequency interactions may be more
practicable than suppression of the relatively high frequency second mode.

In the previous experiments the measurements were limited to single-point,
uncalibrated hot-wire measurements in a naturally excited flow. It is recommended that
future experiments include multiple, simultaneous hot-wire measurements. These
measurements can then provide additional information about the spatial-temporal
dynamics of the transitioning flow. The HOSA tools developed here can be readily
adapted to multiple point measurements. It is also recommended that future experiments

include calibrated measurements of the freestream disturbance field, as these calibrated
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data can be directly compared or input to transition prediction tools. Lastly, in a naturally
excited flow, the forcing of the flow cannot be systematically controlled. It is
recommended that artificial excitation be used in future experiments. The characteristics
of the controlled disturbance input can be measured with the improved CVA capability.
The evolution of the disturbances can be characterized using the HOSA techniques.
These recommendations provide a framework for the currently proposed collaborative
experiments with the Institute of Theoretical and Applied Mechanics, Russian Academy

of Sciences — Siberian Branch.
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TABLES

Table 2.1 - Measurement locations and corresponding stability Reynolds numbers
for the Mach 6 quiet tunnel.

x (in) R
9.00 1455
[ 925 1475
9.50 1495
9.75 1515
10.00 1534
1025 1553
10.50 1572
1075 1590
11.00 1609
1125 1627
11.50 1645
11.75 1663
1200 1680
91-6 Adiabaticand | 1o as ore
Cooled Cone 1275 1732
(Blanchard and 13.00 1749
Selby?") 1325 1766
13.50 1782
1375 1799
14.00 1815
1425 1831
14.50 1847
1475 1863
1500 1879 "\
1525 1894
15.50 1910
1575 1925
16.00 1940
\ 1625 1955
16.50 1970
}?/gg ;ggg 93-10 Adiabatic Cone
17:2 5 2015 (Lachowicz et al35)
17.50 2029
1775 2044
18.00 2058
1825 2072
18.50 2086
1875 2100
19.00 2114 _J

Table 2.2 - Reynolds numbers and overheats for the SWK runs.
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Figure 1.3 - Comparison of experimentally measured integrated growth rates with
linear stability theory (Reference 10).
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Figure 1.4 — Power spectra of disturbances measured in the Mach 6 quiet tunnel
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Figure 1.5 — Downstream evolution of spectral amplitudes of second-mode and
harmonics (Reference 29).
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Figure 2.1 - NASA Langley Mach 6 quiet tunnel.
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Figure 2.2 - Quiet wind tunnel design (Reference 33).
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Figure 2.3 - 93-10 Adiabatic wall flared-cone model used by Lachowicz ef al

(Reference 33).
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Figure 2.4 - 91-6 Adiabatic and cooled wall flared-cone model used by Blanchard

and Selby (Reference 32).
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Figure 2.5 - a) Basic circuit of the constant voltage anemometer, b) circuit with
frequency compensation (Reference 36).
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Figure 2.9 - Graphical illustration of the STFT bispectrum.
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Figure 3.1 - Magnitude of STFT of hot-wire data for the baseline (91-6 adiabatic)

Case.

a) R = 1609, b) R = 1680, ¢) R = 1749, d) R = 1815, e) R = 1879, f) R = 1940.

65




1000

1

0.003

0.002
t(sec)

0 0.001

a)

1000

100 ik
0 . X ‘ﬁ o v 5
0 0.001 0.002 0.003 0.004
t(sec)
b)
1000
900 -
800 -

0.003

0.002
t(sec)

)

0.001

1000

0 0.001 0.002 0.003 0.004
t(sec)
d)
1000~ e
900 -
800 |-

0p° 0.001 0.002 0.003 0.004
t(sec)
€)
1000
900}
oo}

0 0.001

0.003

0.002 0.004

t(sec)

f)

Figure 3.2 - Magnitude of STFT of hot-wire data for the cooled (91-6 cooled) case.
a) R=1609, b) R =1680,c) R =1749, d) R =1815, ¢) R = 1879, f) R = 1940.
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Figure 3.3 - Magnitude of STFT of hot-wire data for the 93-10 adiabatic case.
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Figure 3.4 - Extraction of time series of the STFT at the second-mode frequency.
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cone, a) and d) R = 1680, b) and e) R = 1815, c) and f) R = 1940.
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Figure 3.11 Amplitude (a-c) and phase (d-f) modulation of Gi(7, f,) for the 91-6
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Figure 3.18 - Fourier bispectrum of the 91-6 cooled wall model.
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Figure 3.20 - Fourier bispectrum of the 93-10 Adiabatic model.
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Figure 3.22 - Baseline case (91-6 adiabatic model), R = 1609, a) total bispectrum, b)
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STFT, e) and i) normalized time series.
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Figure 3.23 - Baseline case (91-6 adiabatic model), R = 1680, a) total bispectrum, b)
and f) summed bispectrum, ¢) and g) STFT bispectrum, d) and h) magnitude of
STFT, e) and i) normalized time series.
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Figure 3.24 - Baseline case (91-6 adiabatic model), R = 1680, a) total bispectrum, b)
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STFT, e) and i) normalized time series.
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STFT, e) and i) normalized time series.
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Figure 3.28 - Baseline case (91-6 adiabatic model), R = 1815, a) total bispectrum, b)
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STFT, e) and i) normalized time series.
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Figure 3.29 - Baseline case (91-6 adiabatic model), R = 1879, a) total bispectrum, b)
and f) summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of
STFT, e) and i) normalized time series.
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Figure 3.30 - Baseline case (91-6 adiabatic model), R = 1879, a) total bispectrum, b)
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Figure 3.32 - Baseline case (91-6 adiabatic model), R = 1940, a) total bispectrum, b)
and f) summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of
STFT, e) and i) normalized time series.
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Figure 3.33 - 91-6 cooled wall model, R = 1609, a) total bispectrum, b) and f)
summed bispectrum, ¢) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.34 - 91-6 cooled wall model, R = 1609, a) total bispectrum, b) and f)
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Figure 3.35 - 91-6 cooled wall model, R = 1680, a) total bispectrum, b) and f)
summed bispectrum, ¢) and g) STFT bispectrum, d) and h) magnitude of STFT, €)
and i) normalized time series.
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Figure 3.36 - 91-6 cooled wall model, R = 1680, a) total bispectrum, b) and f)
summed bispectrum, c¢) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.37 - 91-6 cooled wall model, R = 1749, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, e)
and i) normalized time series.
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Figure 3.38 - 91-6 cooled wall model, R = 1749, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.39 - 91-6 cooled wall model, R = 1815, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.40 - 91-6 cooled wall model, R = 1815, a) total bispectrum, b) and f)
summed bispectrum, ¢) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.41 - 91-6 cooled wall model, R = 1879, a) total bispectrum, b) and f)
summed bispectrum, ¢) and g) STFT bispectrum, d) and h) magnitude of STFT, e)
and i) normalized time series.
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Figure 3.42 - 91-6 cooled wall model, R = 1879, a) total bispectrum, b) and f)
summed bispectrum, c¢) and g) STFT bispectrum, d) and h) magnitude of STFT, e)
and i) normalized time series.
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Figure 3.43 - 91-6 cooled wall model, R = 1940, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.44 - 91-6 cooled wall model, R = 1940, a) total bispectrum, b) and f)
summed bispectrum, c¢) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.45 - 93-10 adiabatic wall model, R = 1879, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)

and i) normalized time series.
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Figure 3.46 - 93-10 adiabatic wall model, R = 1879, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, e)
and i) normalized time series.
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Figure 3.47 - 93-10 adiabatic wall model, R = 1940, a) total bispectrum, b) and f)
summed bispectrum, c¢) and g) STFT bispectrum, d) and h) magnitude of STFT, e¢)
and i) normalized time series.
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Figure 3.48 - 93-10 adiabatic wall model, R = 1940, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, e)
and i) normalized time series.
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Figure 3.49 - 93-10 adiabatic wall model, R = 2000, a) total bispectrum, b) and f)
summed bispectrum, ¢) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.50 - 93-10 adiabatic wall model, R = 2000, a) total bispectrum, b) and f)
summed bispectrum, c¢) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.51 - 93-10 adiabatic wall model, R = 2058, a) total bispectrum, b) and f)
summed bispectrum, c¢) and g) STFT bispectrum, d) and h) magnitude of STFT, ¢)
and i) normalized time series.
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Figure 3.52 - 93-10 adiabatic wall model, R = 2058, a) total bispectrum, b) and f)
summed bispectrum, ¢) and g) STFT bispectrum, d) and h) magnitude of STFT, e)
and i) normalized time series.
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Figure 3.53 - 93-10 adiabatic wall model, R = 2114, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, )
and i) normalized time series.
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Figure 3.54 - 93-10 adiabatic wall model, R = 2114, a) total bispectrum, b) and f)
summed bispectrum, c) and g) STFT bispectrum, d) and h) magnitude of STFT, )
and i) normalized time series.




